Copied to
clipboard

G = C24⋊D14order 448 = 26·7

1st semidirect product of C24 and D14 acting via D14/C7=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C241D14, C72C2≀C22, (C2×C28)⋊2D4, C22≀C21D7, C22⋊C43D14, (C2×Dic7)⋊2D4, (C22×D7)⋊2D4, (C22×C14)⋊3D4, D46D143C2, (C2×D4).33D14, C24⋊D71C2, C231(C7⋊D4), C23⋊Dic75C2, C22.33(D4×D7), C14.43C22≀C2, (C23×C14)⋊7C22, C23.D74C22, (D4×C14).49C22, C23.1D145C2, C2.11(C23⋊D14), C23.74(C22×D7), (C22×C14).113C23, (C2×C4)⋊1(C7⋊D4), (C7×C22≀C2)⋊1C2, (C2×C14).30(C2×D4), (C2×C7⋊D4).5C22, C22.29(C2×C7⋊D4), (C7×C22⋊C4)⋊34C22, SmallGroup(448,566)

Series: Derived Chief Lower central Upper central

C1C22×C14 — C24⋊D14
C1C7C14C2×C14C22×C14C2×C7⋊D4D46D14 — C24⋊D14
C7C14C22×C14 — C24⋊D14
C1C2C23C22≀C2

Generators and relations for C24⋊D14
 G = < a,b,c,d,e,f | a2=b2=c2=d2=e14=f2=1, ab=ba, eae-1=ac=ca, ad=da, faf=abcd, bc=cb, ebe-1=fbf=bd=db, fcf=cd=dc, ce=ec, de=ed, df=fd, fef=e-1 >

Subgroups: 1164 in 198 conjugacy classes, 39 normal (23 characteristic)
C1, C2, C2, C4, C22, C22, C22, C7, C2×C4, C2×C4, D4, Q8, C23, C23, D7, C14, C14, C22⋊C4, C22⋊C4, C2×D4, C2×D4, C4○D4, C24, Dic7, C28, D14, C2×C14, C2×C14, C2×C14, C23⋊C4, C22≀C2, C22≀C2, 2+ 1+4, Dic14, C4×D7, D28, C2×Dic7, C2×Dic7, C7⋊D4, C2×C28, C2×C28, C7×D4, C22×D7, C22×D7, C22×C14, C22×C14, C2≀C22, C23.D7, C23.D7, C7×C22⋊C4, C7×C22⋊C4, C4○D28, D4×D7, D42D7, C2×C7⋊D4, C2×C7⋊D4, D4×C14, D4×C14, C23×C14, C23.1D14, C23⋊Dic7, C24⋊D7, C7×C22≀C2, D46D14, C24⋊D14
Quotients: C1, C2, C22, D4, C23, D7, C2×D4, D14, C22≀C2, C7⋊D4, C22×D7, C2≀C22, D4×D7, C2×C7⋊D4, C23⋊D14, C24⋊D14

Smallest permutation representation of C24⋊D14
On 56 points
Generators in S56
(1 45)(2 53)(3 47)(4 55)(5 49)(6 43)(7 51)(22 48)(23 56)(24 50)(25 44)(26 52)(27 46)(28 54)
(1 45)(2 53)(3 47)(4 55)(5 49)(6 43)(7 51)(8 37)(9 31)(10 39)(11 33)(12 41)(13 35)(14 29)(15 38)(16 32)(17 40)(18 34)(19 42)(20 36)(21 30)(22 48)(23 56)(24 50)(25 44)(26 52)(27 46)(28 54)
(1 26)(2 27)(3 28)(4 22)(5 23)(6 24)(7 25)(43 50)(44 51)(45 52)(46 53)(47 54)(48 55)(49 56)
(1 26)(2 27)(3 28)(4 22)(5 23)(6 24)(7 25)(8 21)(9 15)(10 16)(11 17)(12 18)(13 19)(14 20)(29 36)(30 37)(31 38)(32 39)(33 40)(34 41)(35 42)(43 50)(44 51)(45 52)(46 53)(47 54)(48 55)(49 56)
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42)(43 44 45 46 47 48 49 50 51 52 53 54 55 56)
(1 21)(2 20)(3 19)(4 18)(5 17)(6 16)(7 15)(8 26)(9 25)(10 24)(11 23)(12 22)(13 28)(14 27)(29 53)(30 52)(31 51)(32 50)(33 49)(34 48)(35 47)(36 46)(37 45)(38 44)(39 43)(40 56)(41 55)(42 54)

G:=sub<Sym(56)| (1,45)(2,53)(3,47)(4,55)(5,49)(6,43)(7,51)(22,48)(23,56)(24,50)(25,44)(26,52)(27,46)(28,54), (1,45)(2,53)(3,47)(4,55)(5,49)(6,43)(7,51)(8,37)(9,31)(10,39)(11,33)(12,41)(13,35)(14,29)(15,38)(16,32)(17,40)(18,34)(19,42)(20,36)(21,30)(22,48)(23,56)(24,50)(25,44)(26,52)(27,46)(28,54), (1,26)(2,27)(3,28)(4,22)(5,23)(6,24)(7,25)(43,50)(44,51)(45,52)(46,53)(47,54)(48,55)(49,56), (1,26)(2,27)(3,28)(4,22)(5,23)(6,24)(7,25)(8,21)(9,15)(10,16)(11,17)(12,18)(13,19)(14,20)(29,36)(30,37)(31,38)(32,39)(33,40)(34,41)(35,42)(43,50)(44,51)(45,52)(46,53)(47,54)(48,55)(49,56), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56), (1,21)(2,20)(3,19)(4,18)(5,17)(6,16)(7,15)(8,26)(9,25)(10,24)(11,23)(12,22)(13,28)(14,27)(29,53)(30,52)(31,51)(32,50)(33,49)(34,48)(35,47)(36,46)(37,45)(38,44)(39,43)(40,56)(41,55)(42,54)>;

G:=Group( (1,45)(2,53)(3,47)(4,55)(5,49)(6,43)(7,51)(22,48)(23,56)(24,50)(25,44)(26,52)(27,46)(28,54), (1,45)(2,53)(3,47)(4,55)(5,49)(6,43)(7,51)(8,37)(9,31)(10,39)(11,33)(12,41)(13,35)(14,29)(15,38)(16,32)(17,40)(18,34)(19,42)(20,36)(21,30)(22,48)(23,56)(24,50)(25,44)(26,52)(27,46)(28,54), (1,26)(2,27)(3,28)(4,22)(5,23)(6,24)(7,25)(43,50)(44,51)(45,52)(46,53)(47,54)(48,55)(49,56), (1,26)(2,27)(3,28)(4,22)(5,23)(6,24)(7,25)(8,21)(9,15)(10,16)(11,17)(12,18)(13,19)(14,20)(29,36)(30,37)(31,38)(32,39)(33,40)(34,41)(35,42)(43,50)(44,51)(45,52)(46,53)(47,54)(48,55)(49,56), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56), (1,21)(2,20)(3,19)(4,18)(5,17)(6,16)(7,15)(8,26)(9,25)(10,24)(11,23)(12,22)(13,28)(14,27)(29,53)(30,52)(31,51)(32,50)(33,49)(34,48)(35,47)(36,46)(37,45)(38,44)(39,43)(40,56)(41,55)(42,54) );

G=PermutationGroup([[(1,45),(2,53),(3,47),(4,55),(5,49),(6,43),(7,51),(22,48),(23,56),(24,50),(25,44),(26,52),(27,46),(28,54)], [(1,45),(2,53),(3,47),(4,55),(5,49),(6,43),(7,51),(8,37),(9,31),(10,39),(11,33),(12,41),(13,35),(14,29),(15,38),(16,32),(17,40),(18,34),(19,42),(20,36),(21,30),(22,48),(23,56),(24,50),(25,44),(26,52),(27,46),(28,54)], [(1,26),(2,27),(3,28),(4,22),(5,23),(6,24),(7,25),(43,50),(44,51),(45,52),(46,53),(47,54),(48,55),(49,56)], [(1,26),(2,27),(3,28),(4,22),(5,23),(6,24),(7,25),(8,21),(9,15),(10,16),(11,17),(12,18),(13,19),(14,20),(29,36),(30,37),(31,38),(32,39),(33,40),(34,41),(35,42),(43,50),(44,51),(45,52),(46,53),(47,54),(48,55),(49,56)], [(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42),(43,44,45,46,47,48,49,50,51,52,53,54,55,56)], [(1,21),(2,20),(3,19),(4,18),(5,17),(6,16),(7,15),(8,26),(9,25),(10,24),(11,23),(12,22),(13,28),(14,27),(29,53),(30,52),(31,51),(32,50),(33,49),(34,48),(35,47),(36,46),(37,45),(38,44),(39,43),(40,56),(41,55),(42,54)]])

58 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I4A4B4C4D4E4F7A7B7C14A···14I14J···14AA14AB14AC14AD28A···28I
order122222222244444477714···1414···1414141428···28
size11222444282848282856562222···24···48888···8

58 irreducible representations

dim1111112222222222444
type++++++++++++++++
imageC1C2C2C2C2C2D4D4D4D4D7D14D14D14C7⋊D4C7⋊D4C2≀C22D4×D7C24⋊D14
kernelC24⋊D14C23.1D14C23⋊Dic7C24⋊D7C7×C22≀C2D46D14C2×Dic7C2×C28C22×D7C22×C14C22≀C2C22⋊C4C2×D4C24C2×C4C23C7C22C1
# reps12121121213333662612

Matrix representation of C24⋊D14 in GL4(𝔽29) generated by

10230
0100
00280
0031
,
2802325
251021
00280
0031
,
1004
0100
00280
00028
,
28000
02800
00280
00028
,
71106
02200
00257
0004
,
04257
00014
711014
02700
G:=sub<GL(4,GF(29))| [1,0,0,0,0,1,0,0,23,0,28,3,0,0,0,1],[28,25,0,0,0,1,0,0,23,0,28,3,25,21,0,1],[1,0,0,0,0,1,0,0,0,0,28,0,4,0,0,28],[28,0,0,0,0,28,0,0,0,0,28,0,0,0,0,28],[7,0,0,0,11,22,0,0,0,0,25,0,6,0,7,4],[0,0,7,0,4,0,11,27,25,0,0,0,7,14,14,0] >;

C24⋊D14 in GAP, Magma, Sage, TeX

C_2^4\rtimes D_{14}
% in TeX

G:=Group("C2^4:D14");
// GroupNames label

G:=SmallGroup(448,566);
// by ID

G=gap.SmallGroup(448,566);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,254,219,570,1684,18822]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^2=e^14=f^2=1,a*b=b*a,e*a*e^-1=a*c=c*a,a*d=d*a,f*a*f=a*b*c*d,b*c=c*b,e*b*e^-1=f*b*f=b*d=d*b,f*c*f=c*d=d*c,c*e=e*c,d*e=e*d,d*f=f*d,f*e*f=e^-1>;
// generators/relations

׿
×
𝔽